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Abstract 
The growing literature on Data Mining since the 2000s has recently expanded to include the sub-field “Educational Data Mining 

(EDM)”. The present study seeks to measure the contribution to the literature of specific articles written about EDM, by studying 
the publication volume, authors, article types, impact of the citations, and common citation networks. We employed bibliometric 
research methods to analyze the 259 articles published on EDM selected for the study. In recent years, there has been a significant 
increase in the number of EDM articles published in international journals, and this study sought to analyze the most cited 
researchers, those with the highest contribution to the literature. Additionally, using common word analysis, the most used three 
term patterns in the articles have been identified. The study also provides suggestions to improve EDM literature in the 
international field. 
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1 Introduction  
The information that a researcher acquires or collects is called data. The word data is based on the word “datum”, originating 

from the Latin “fact” and “reality”. Even though data means “fact”, because the working mechanism of the information or 
computer technology is numerical, this “fact” may not always be shown concretely (Zins, 2007). An unidentified sound, image, or 
object can be referred to as data. Based on these definitions, data can be defined as raw information that is not processed. 

The word information originates from the Latin word “information” and is defined as “to provide knowledge or intelligence”. 
The word knowledge can be defined as information that has gained meaning. The most important distinguishing factor between 
knowledge and information is that knowledge is a concept belonging to humans and, being a social concept, it is related to past and 
future (Zaim, 2005). Therefore, while knowledge is something kept in the brain, data and information are the forms added later to 
the knowledge in the brain (Akgün & Keskin, 2003). However, the definitions regarding these three concepts are not limited to this. 
For Çakırer (2013), information is the unorganized form of raw data. The organized data forms meaning and is shaped for a specific 
purpose. Güçlü and Sotirofski (2006) maintain that data are organized by others and only make sense for the person who organizes 
them. According to Abdullah et al. (2005), knowledge is defined clearly and expressed easily without any obscurity. In short, it can 
be said that to gain knowledge, information is required, and to gain information, data are needed. With this need, the concept of 
"data mining", which is very popular, gains importance. 

Data mining is a concept that we encounter often and which is used in many areas is to analyze, and discover new relations 
within, big data. Generally, data mining aims to provide computer systems with features such as classification, clustering, 
information retrieval, and decision-making (Cabena et al., 1998; Diwani & Sam 2014). For Özbay (2015), data mining seeks to 
acquire meaningful information from a large amount of data. The subsequent aim is that this meaningful information is used to 
estimate and eliminate the defects in a system. As such, it prepares the data for the next step. 

Data mining is divided into “Predictive” and “Descriptive” models. While predictive models consist of classification, regression, 
time analysis, and prediction, descriptive models include clustering, summarization, association rules, and sequence discovery 
(Dunham, 2003). In predictive models, with the available data, a prediction model is formed. With the prediction model, the factors 
whose results are unknown can be analyzed. On the other hand, descriptive models are used to examine the features of the data. 
The data mining used in education is called educational data mining (EDM). The aim of this new concept in education is to acquire 
meaningful information for the education industry by analyzing large sums of data from the educational field (Baker, 2010). Using 
EDM, the needs analysis made with the available data provides guidance for educators in terms of determining or changing the 
strategies they use. EDM is the research field that enables analysis of the data coming from the education system. With the 
increasing amount of data in education, EDM has become a new practice area for the larger data mining field (Güldal & Çakıcı, 
2017). While Romero and Ventura (2010) hold that EDM is a practice which uses the methodology and techniques of data mining in 
the analysis of data from the education field to answer educational questions, Baker (2010) sees EDM as a discipline interested in 
researching data types in the educational environment and developing new methods. 

EDM aims to increase the quality of education by obtaining information about learning and teaching processes (Romero et al., 
2004). EDM uses the data types coming from education platforms to develop and analyze student models showing the current 
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knowledge and motivation of the student (Mohamad & Tasir, 2013) and also can be used to increase student performance and 
level of success at the end of each school year, or to decrease failure rates (Fernandes et al., 2019). Even though most traditional 
data mining can be applied to EDM, there are some targets, techniques, and data sets that differentiate EDM from traditional data 
mining. In all three cases, there might be some adjustments that need to be made because of the characteristics of the education 
environment (Hanna, 2004). It is important to note that EDM is often confused with learning analytics. While EDM is the common 
ground for computer science, education, and statistics, learning analytics is only a sub-domain of statistics (Romero & Ventura, 
2010). This is the fundamental point of differentiation between the two fields. 

Previous EDM studies have provided benefits for those working in the education field. As described by Güldal and Çakıcı (2017), 
among others, these are: for students, to increase motivation; for teachers, to enhance learning by finding new methods in learning 
and teaching processes; for education executives, to gain data as a result of EDM studies; and for researchers, to answer important 
questions about the field with the new methods that will be used in education or the data that will be acquired to increase student 
performance. The main purpose of this study is to measure the influence of publication in the specific database about educational 
data mining and to show the academic impact of a piece of studies. To achieve this purpose,  this research seeks to answers the 
research questions below: 

1. How has the publication volume of the articles on Educational Data Mining and the number of articles published evolved 
over time? 

2. What is the citation impact of the authors in Educational Data Mining? 
3. What topics are studied most in Educational Data Mining research? 

2 Method 
This research employed a bibliometric analysis to study EDM publications. Bibliometric studies use quantitative methods to 

analyze data (White & MacCain, 1998). Bibliometrics is the application of mathematical and statistical methods to other 
communication tools (Pritchard, 1969), and the analysis of the specific features of published documents, such as the author, 
subject, resources cited by the author, and the relationship between the resources cited (Al & Tonta, 2004). The bibliometric 
analyses used in this study include co-authoring, citation, common citation, and common word analysis. 

 

2.1 Identification of the Resources 
The first step of this research was to develop a search strategy (Fig 1.), to determine how and where we would locate 

resources. To that end, we decided on a key word that would be used for the research. We searched ( search made in the last 
quarter of 2019) in the Science Direct database for the word group “Educational Data Mining” and found in total 303 publications. 
The purpose of using a key word search is to identify the highest number of articles written on educational data mining. Among 
these publications, the studies on data mining used in engineering research, reports, books and book chapters, reviews and 
publications focusing on other disciplines such as data analysis were disregarded. 

 

 

Figure 1. PRISMA Flow Diagram (A diagram showing the stages in determining and scanning the resources) (Moher, Liberati, 
Tetzlaff & Altman, 2009). 
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2.2 Data Collection and Analysis 
Bibliometric analyses were made in VOSviewer, a program widely used to make bibliometric analysis and to form a visual map 

of the data. All articles were gathered in one RIS file. This file included title, publication, author, date, and summary information. 
We calculated the citation number (citation analysis) of an author or an article in Science Direct. Citation analysis tries to find the 
similarity between two articles by measuring the appearance frequency of articles in one data set in the bibliography (Small, 1974). 
Citation analysis helps find the resources used the most among the articles written on a subject, the authors with the highest 
contribution, and the subjects which these authors study (Al & Tonta, 2004). 

The data, therefore, were first copied on a new, editable format and then united with the data gathered from 1 article 
identified in additional research. All these articles (n=259) have been analyzed via VOSviewer. 

3 Findings  
In this part of our research, we present information about each research question mentioned in the introduction. 

3.1  Volume and Evolution of EDM Data Base 
All 259 articles in our database were published in international journals. As shown in Figure 2, all the EDM articles in our data 

base were published after 2007. Based on this, it can be said that we didn’t find any related studies before 2007 with our search 
criterias. The number of published articles on EDM increased until 2016, at which point it began to decline, reaching its lowest 
point within the last four years in 2017. The reason for this decrease might be the increase in research on Artificial Intelligence 
which emerged at about the same time as EDM. 

 

 

Figure 2: The Volume of International EDM Articles Published Between 2007 and 2019 (n=259) *Includes the Articles Which 
Have Been Published Until November 2019 in Science Direct. 

 
Subsequently, we researched the international journals with the highest number of publications (Figure 3). From among the 9 

international journals contributing to EDM literature, the journals that published more than 40 articles were Procedia Computer 
Science (PCS), Computers in Human Behavior (CHB), and Computers & Education (C&E). Procedia- Social and Behavioral Sciences 
(PSBS), Expert Systems with Applications (ESA), The Internet and Higher Education (TIHE), Knowledge-Based Systems (KBS), 
Neurocomputing (N), and Future Generation Computer Systems (FGCS) contributed each between 6 and 19 articles. 

2
3 3 6

16

12

20 25

34

37

28

38

35

0

5

10

15

20

25

30

35

40

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019



Science Mapping Research on Educational Data Mining: A Bibliometric Review of International Publications 4 
 

E-ISSN: 2602-4225                               www.futurevisionsjournal.com                                                                                                                                        

 

Figure 3: The Distribution of International EDM Articles According to Most Popular Journals (N=259). *This Image Includes 
Journals That Published At Least Six Relevant Articles. In Addition, There Are 42 Journals Which Published Four or Fewer Articles. 
 

3.2  Influential Authors in EDM Literature 
To find the most influential authors in international EDM literature, we researched the authors using VOSviewer. As seen in 

Figure 4, the size of the circles represents most influential authors effectiveness. Our author common citation analysis includes all 
international authors who have contributed to the EDM literature. The size of the circles in Figure 4. is indicative of how many 
citations the author has received. VOSviewer creates a citation map for the authors based on their citation frequency. The authors 
who share a common tradition tend to be close to each other and can be included in the same colored “cluster” in the citation 
analysis. 

Based on our Science Direct database, we tried to find the common citation analysis of the authors (n=259). In the analysis of 
766 different authors, we used a threshold value of at least 2 citations using the common citations analysis and set the VOSviewer 
to show 89 authors in the common citations analysis (Figure 4). 

 

Figure 4: The Common Author Map of International EDM Articles (N=766 Authors; Threshold Value 2 Articles, 89 Authors). 
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The VOSviewer that we used for common author analysis shows 33 clusters. The biggest circle in the middle of the cluster 
shows the most influential authors. When the size of the circle gets smaller, the influence of the author decreases. 

Subsequently, we checked the number of citations of the most influential authors publishing articles in EDM literature (Table 
1). 

 
Table 1: International EDM Article Authors With Total Link Strength of 6 And Higher (N=766 Authors, Threshold Value 2 

Articles, 89 Authors). 

Authors 
Weight 

Links* Total Link Strength** Documents*** 

gašević, dragan 7 19 7 

dawson, shane 7 15 7 

mirriahi, negin 5 10 3 

pardo, abelardo 5 10 4 

ventura, sebastián 3 10 6 

munk, michal 6 9 4 

romero, cristóbal 3 9 6 

xing, wanli 4 8 7 

chalaris, manolis 3 7 3 

tsolakidis, anastasios 3 7 3 

abdullah, zailani 3 6 2 

ahmad, noraziah 3 6 2 

chalaris, ıoannis 3 6 2 

deris, mustafa mat 3 6 2 

herawan, tutut 3 6 2 

joksimović, srećko 5 6 2 

jovanović, jelena 5 6 2 

kapusta, jozef 3 6 2 

kirschner, paul a. 5 6 3 

kovanović, vitomir 5 6 2 

pilkova, anna 3 6 2 

skourlas, christos 3 6 2 

svec, peter 3 6 2 

zhu, gaoxia 3 6 3 
*Links: The number of links with other authors. 
**Total Link Strength: The total link strength with other authors. 
***Documents: Out of 259 articles, the number of articles that belong to the author.) 

 
Here we have included all the international article authors (8 different authors were disregarded who haven’t been cited). 

Among these authors, 5 of them have total link strength of minimum ten and higher, 76 of them have total link strength with other 
authors minimum two and higher. 

3.3 Most Studied Subjects in EDM Literature 
We first tried to form a common word analysis by determining a key word. Here, we applied pair word to all articles in our 

database (n=259). We searched all the key words by adjusting our search in such a way that it would have a minimum 3 threshold 
value and 47 key words on the map (Figure 5). 
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Figure 5: Co-occurrence Map of Key Words (n=859 key words; threshold value 3, screen 47 key words). 

Interpretation of the common word analysis follows a similar approach to common citation analysis. The common word 
analysis here revealed nine clusters. The green cluster, the first cluster, is focused on subjects like educational data mining, e-
learning, and text mining. The second cluster in density focuses on distant learning multimedia systems, and the third cluster 
focuses on prediction and clustering. The other six clusters concentrate on big data, e-learning, and mining subjects which are also 
included in the main three clusters. The clustered structure of the map shows the direct link between educational data mining and 
data mining. This is in line with the literature. 

We also checked the articles within our sample for the usage number of the words used most frequently. Here we included all 
international articles. The most frequently encountered words in this literature are: Educational Data Mining, Data Mining, Learning 
Analytics, and E-learning. The position of Educational Data Mining, Data Mining, and Learning Analytics shows the centralities 
organizing the concepts in EDM literature (Table 2). 

 
Table 2: International EDM Articles with Occurrence Value of 3 And Higher (threshold value 3, 47 key words). 

 

Keyword 
Weight 

Links* Total Link 
Strength** Occurrences 

educational data mining 25 54 53 
data mining 25 47 40 
learning analytics 25 52 40 
e-learning 13 16 16 
clustering 10 15 9 
higher education 11 17 9 
teaching/learning strategies 7 11 9 
intelligent tutoring systems 8 11 9 
big data 8 11 8 
classification 11 16 8 
online learning 8 12 8 
self-regulated learning 6 11 8 
machine learning 6 6 7 
academic performance 9 13 6 
association rules 7 13 6 
prediction 9 13 6 
collaborative learning 6 7 5 
learning management systems 3 4 5 
text mining 2 3 5 
ınteractive learning environments 6 8 5 
decision tree 6 9 4 
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distance education and telelearning 6 7 4 
education 1 1 4 
elearning 6 6 4 
evaluation of cal systems 9 10 4 
learning strategies 5 5 4 
moodle 4 6 4 
process mining 5 6 4 
student performance 3 5 4 
visualization 6 8 4 
content analysis 4 4 3 
Computer supported collaborative learning (cscl) 3 4 3 
distance education 3 3 3 
educational systems 4 5 3 
genetic algorithm 5 5 3 
learning management system 5 6 3 
multi-label feature selection 1 1 3 
multimedia/hypermedia systems 5 7 3 
performance prediction 4 6 3 
sentiment analysis 4 5 3 
sequential pattern mining 5 5 3 
serious games 3 4 3 
simulations 1 2 3 
student retention 5 8 3 
web mining 5 7 3 
weka 4 4 3 
intelligent tutoring system 1 1 3 

 
*Links: The number of links with other authors. **Total Link Strength: The total link strength with other authors. 

4 Discussion, Conclusion and Implications 
The fast growth in international EDM research has encouraged researchers in recent years to undertake systematic studies of 

EDM literature. To contribute to the improvement of the EDM database, this article analyzed articles published on educational data 
mining. In this part, we present our opinions on the limits and results of the study. 

This research has revealed that EDM literature has been growing fast and has been mentioned in the journals more in the last 
four years. We believe that the EDM literature will grow more in the coming years. Our author analysis revealed that more than 
500 different authors have contributed to the journals available via the Science Direct database. We analyzed the authors who have 
made the highest contribution to the field. We saw that 89 international researchers have published many articles on the field and 
other researchers have written two or more articles. It means that, EDM is fast growing but limited reasearchers are interested in 
this field. 

Based on the results of the research, we deduce that international EDM research is quite influential and unique. The increasing 
amount of EDM research is the sign of a correct research culture in the scientific discipline. The most cited articles are from the last 
four years. As such, if the current trend continues, we expect that research in the EDM field will increase proportionally. 
Additionally, Figure 3 shows the impact of specific journals on the number of citations. It is seen that Procedia Computer Science 
(PCS), Computers in Human Behavior (CHB), and Computers & Education (C&E), all of which publish articles on EDM, are the most 
prolific. 

Moreover, the common word analysis in Table 2 shows that the key words of the top three study subjects in EDM literature are 
educational data mining, data mining, and learning analytics. Apart from that, other frequently encountered key words are e-
learning, higher education, teaching/learning strategies, and big data. As a result of this analysis, we are now able to say the likely 
direction of EDM research’s future evolution and which authors and journals will contribute the most to the development of the 
field. 

5 Limitedness 
This research includes 259 research articles reached via Science Direct. It does not include post graduate theses, conference 

manifestations, or books on EDM. Because the research was designed and undertaken within one database, it does not consist of 
all journal articles. For this reason, we refrain from claiming that the results of this research speak for the entirety of EDM 
literature. 
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